When functions are combined to form a new function, the new function is called a composite function. The results of the expressions are:
Given that
[tex]j(x) = h^{-1}(x)[/tex]
[tex]h(8) = 4[/tex]
[tex]j(9) = -1[/tex]
[tex](a)\ h^{-1}(-1)[/tex]
Using [tex]j(x) = h^{-1}(x)[/tex]
The equation becomes
[tex]h^{-1}(-1) = j(-1)[/tex]
There is no sufficient information to calculate [tex]j(-1)[/tex]
So:
[tex]h^{-1}(-1) = unknown[/tex]
[tex](b)\ j(h(8))[/tex]
[tex]j(x) = h^{-1}(x)[/tex] means that:
[tex]j(h(x))= x[/tex]
So, we have:
[tex]j(h(8))= 8[/tex]
[tex](c)\ h(j(8))[/tex]
There is no sufficient to calculate j(8).
So:
[tex]h(j(8)) = unknown[/tex]
[tex](d)\ j(4)[/tex]
We have:
[tex]h(8) = 4[/tex]
This means that:
[tex]j(4) = 8[/tex]
[tex](e)\ j(8)[/tex]
There is no sufficient to calculate j(8).
So:
[tex]j(8) = unknown[/tex]
[tex](f)\ j^{-1}(-1)[/tex]
We have:
[tex]j(9) = -1[/tex]
This means that:
[tex]j^{-1}(-1) = 9[/tex]
[tex](g)\ h(9)[/tex]
There is no sufficient to calculate h(9).
So:
[tex]h(9) = unknown[/tex]
Read more about composite functions at:
https://brainly.com/question/20030485