PLEASE SHOW WORK
Sand leaks at 36 cubic meters/sec into a cone shaped pile that had a radius always equal to the height. When the radius is 3 meters, at what rate (in m/sec) is the height changing?

A. 3/pi
B. 2/pi
C. 4/pi
D. 1/pi
E. 8/pi

Respuesta :

(C)

Step-by-step explanation:

The volume of the conical pile is given by

[tex]V = \dfrac{\pi}{3}r^2h[/tex]

Taking the derivative of V with respect to time, we get

[tex]\dfrac{dV}{dt} = \dfrac{\pi}{3}\dfrac{d}{dt}(r^2h)[/tex]

[tex]\:\:\:\:\:\:\:= \dfrac{\pi}{3}\left(2rh\dfrac{dr}{dt} + r^2\dfrac{dh}{dt}\right)[/tex]

Since r is always equal to h, we can set

[tex]\dfrac{dr}{dt} = \dfrac{dh}{dt}[/tex]

so that our expression for dV/dt becomes

[tex]\dfrac{dV}{dt} = \dfrac{\pi}{3}\left(3r^2\dfrac{dh}{dt}\right)[/tex]

[tex]\:\:\:\:\:\:\:= \pi r^2\dfrac{dh}{dt}[/tex]

Solving for dh/dt, we get

[tex]\dfrac{dh}{dt} = \dfrac{1}{\pi r^2}\dfrac{dV}{dt}[/tex]

[tex]\:\:\:\:\:\:\:= \dfrac{1}{9\pi\:\text{m}^2}(36\:\text{m}^3\text{/s})[/tex]

[tex]\:\:\:\:\:\:\:= \dfrac{4}{\pi}\:\text{m/s}[/tex]