Respuesta :
1. [tex]x^2+8x+12=0[/tex]
discriminant: 16, nature of roots: real and unique,
2. [tex]4x^2+3x+3=0[/tex]
discriminant: -39, nature of roots: imaginary,
3. [tex]4x^2+12x+9=0[/tex]
discriminant: 0, nature of roots: real and equal,
4. [tex]2x^2+1=5[/tex]
discriminant:-32, nature of roots: imaginary,
5, [tex]x^2=5x+4[/tex]
discriminant 41, nature of roots real and unique,
For a quadratic equation [tex]ax^2+bx+c=0[/tex], the discriminant is [tex]D=b^2-4ac[/tex] and for:
[tex]D>0[/tex], roots are real and unique.
[tex]D=0[/tex], roots are real and equal.
[tex]D<0[/tex], roots are imaginary.
1. [tex]x^2+8x+12=0[/tex]
[tex]D=8^2-4(1)(12)[/tex]
[tex]D=64-48[/tex]
[tex]D=16>0[/tex]
So, roots are real and unique.
2. [tex]4x^2+3x+3=0[/tex]
[tex]D=3^2-4(4)(3)[/tex]
[tex]D=9-48[/tex]
[tex]D=-39<0[/tex]
So, roots are imaginary.
3. [tex]4x^2+12x+9=0[/tex]
[tex]D=12^2-4(4)(9)[/tex]
[tex]D=144-144[/tex]
[tex]D=0[/tex]
So, roots are real and equal.
4. [tex]2x^2+1=5[/tex]
[tex]2x^2-4=0[/tex]
[tex]D=0^2-4(2)(4)[/tex]
[tex]D=0-32[/tex]
[tex]D=-32<0[/tex]
So, roots are imaginary.
5. [tex]x^2=5x+4[/tex]
[tex]x^2-5x-4=0[/tex]
[tex]D=(-5)^2-4(1)(-4)[/tex]
[tex]D=25+16[/tex]
[tex]D=41>0[/tex]
So, roots are real and unique.
Learn more here:
https://brainly.com/question/15667056?referrer=searchResults