The question is an illustration of right-angled triangles.
See attachment for the sketch
(a) Show that RF = 49.1
Considering [tex]\triangle FTR[/tex]
We have:
[tex]\tan(R) = \frac{FT}{RF}[/tex] ---- tangent ratio
This gives:
[tex]\tan(27) = \frac{25}{RF}[/tex]
Make RF the subject
[tex]RF = \frac{25}{\tan(27)}[/tex]
[tex]RF = 49.06[/tex]
Approximate
[tex]RF = 49.1[/tex]
(b) Calculate SR
Considering [tex]\triangle FRS[/tex]
We have:
[tex]SR^2 = RF^2 + FS^2[/tex] ---- Pythagoras theorem
This gives
[tex]SR^2 = 49.1^2 + 43.3^2[/tex]
[tex]SR^2 = 4285.7[/tex]
Take square roots
[tex]SR = 65.5[/tex]
(c) The elevation from S to T
To do this, we make use of tangent ratio from [tex]\triangle FST[/tex]
[tex]\tan(S) = \frac{FT}{FS}[/tex]
[tex]\tan(S) = \frac{25}{43.3}[/tex]
Take arc tan of both sides
[tex]S = \tan^{-1}(\frac{25}{43.3})[/tex]
[tex]S = 30^o[/tex]
Read more about right-angled triangles at:
https://brainly.com/question/3770177