Respuesta :
Using shifting concepts, it is found that the function g is:
[tex]g(x) = -9x^2 - 198x - 1085[/tex]
-------------------------
- The parent function is [tex]f(x) = x^2[/tex].
-------------------------
- Horizontally stretching a function by a factor of b is the finding [tex]f(\frac{x}{b})[/tex].
- Thus, horizontally stretching by a factor of 1/3, we have:
[tex]g(x) = f(\frac{x}{\frac{1}{3}}) = f(3x) = (3x)^2 = 9x^2[/tex]
-------------------------
- Reflecting vertically is finding [tex]-f(x)[/tex]
- Reflecting horizontally is finding [tex]f(-x)[/tex].
Thus:
[tex]g(x) = -9(-x)^2 = -9x^2[/tex]
-------------------------
- Translating a units to the left is finding [tex]f(x + a)[/tex], thus:
- Translating 11 units to the left is finding [tex]f(x + 11)[/tex], thus:
[tex]g(x) = -9(x + 11)^2 = -9(x^2 + 22x + 121) = -9x^2 - 198x - 1089[/tex]
-------------------------
- Shifting a units up is finding [tex]f(x) + a[/tex], thus:
- 4 units up is finding [tex]f(x) + 4[/tex], thus:
[tex]g(x) = -9x^2 - 198x - 1089 + 4 = -9x^2 - 198x - 1085[/tex]
A similar problem is given at https://brainly.com/question/23325498