Respuesta :
The probabilities according to the question will be:
(1) 0.4019
(2) 0.1608
(3) "$83350" will be wasted.
For Part (1) and (2),
Let "X" be the hoax calls out of 5 with the probability of each being hoax,
= [tex]\frac{1}{6}[/tex]
→ [tex]X \sim Bin (5, \frac{1}{6} )[/tex]
(1)
→ [tex]P[None \ of \ the \ calls \ was \ hoax (X =0)] = 5_C_o (p)^0 (1-p)^5[/tex]
[tex]= 1\times 1\times (1-\frac{1}{6} )^5[/tex]
[tex]= 0.4019[/tex]
(2)
→ [tex]P[3 \ callers \ needed \ assistance] = P[2 \ calls \ are \ hoax][/tex]
[tex]= P[X=2][/tex]
[tex]= 5_C_2 p^2 (1-p)^3[/tex]
[tex]= 5_C_2 (\frac{1}{6} )^2 (1-\frac{1}{6} )^3[/tex]
[tex]= 0.1608[/tex]
(3) Let X be the hoax calls next year out of 10,000 calls. So, [tex]X \sim Bin (10000, \frac{1}{6} )[/tex]
→ [tex]Expected \ hoax \ calls = np[/tex]
[tex]= 10000\times \frac{1}{6}[/tex]
[tex]= 1666.67[/tex] or, [tex]1667[/tex]
So,
→ [tex]The \ wasted \ money = 50\times 1667[/tex]
[tex]= 83350[/tex] ($)
Thus the above answer is correct.
Learn more about probability here:
https://brainly.com/question/13009213