The coordinates of the vertices of [tex]\triangle Q'R'S'[/tex] are [tex]Q'(x,y) = (0, -4)[/tex], [tex]R'(x,y) = (7,-6)[/tex] and [tex]S'(x,y) = (8, -3)[/tex], respectively.
Vectorially speaking, a point is translated to another location on Cartesian plane by means of this expression:
[tex]A'(x,y) = A(x,y) + T(x,y)[/tex] (1)
Where:
If we know that [tex]Q(x,y) = (-4,2)[/tex], [tex]R(x,y) = (3,0)[/tex], [tex]S(x,y) = (4, 3)[/tex] and [tex]R'(x,y) = (7, -6)[/tex][tex]T(x,y) = (4, -6)[/tex], then the coordinates of the vertices of the triangle [tex]Q'R'S'[/tex] are:
[tex]Q'(x,y) = Q(x,y) + T(x,y)[/tex]
[tex]Q'(x,y) = (-4,2) + (4,-6)[/tex]
[tex]Q'(x,y) = (0, -4)[/tex]
[tex]R'(x,y) = R(x,y) + T(x,y)[/tex]
[tex]R'(x,y) = (3,0) +(4,-6)[/tex]
[tex]R'(x,y) = (7,-6)[/tex]
[tex]S'(x,y) = S(x,y) + T(x,y)[/tex]
[tex]S'(x,y) = (4, 3) + (4, -6)[/tex]
[tex]S'(x,y) = (8, -3)[/tex]
The coordinates of the vertices of [tex]\triangle Q'R'S'[/tex] are [tex]Q'(x,y) = (0, -4)[/tex], [tex]R'(x,y) = (7,-6)[/tex] and [tex]S'(x,y) = (8, -3)[/tex], respectively.
We kindly invite to see this question on translations: https://brainly.com/question/17485121