Respuesta :

Each range value given was substituted into the function for f(x) and the equation formed was solved for x.

The values of the domain of the given function are:

A. 1

E. 5

F. 6

G. 7

Given:

[tex]f(x) = -7x + 9[/tex]

Range: {[tex]2, -26,-33,-40[/tex]}

To find the domain values of the function, you would do the following:

  • Substitute each given range value of the function for [tex]f(x)[/tex]
  • Solve each equation to determine the value of x in each case
  • The values of x you get from each resulting equation will constitute the domain values of the given function.

Thus:

  • For range value [tex]f(x)[/tex], of 2, find x by substituting [tex]f(x) = 2[/tex] into [tex]f(x) = -7x + 9[/tex]

[tex]2 = -7x + 9[/tex]

Subtract 9 from each side

[tex]2 - 9 = -7x + 9 - 9\\-7 = -7x[/tex]

Divide both sides by -7

[tex]\frac{-7}{-7} = \frac{-7x}{-7} \\1 = x\\x = 1[/tex]

  • For range value [tex]f(x)[/tex], of -26, find x by substituting [tex]f(x) = -26[/tex] into [tex]f(x) = -7x + 9[/tex]

[tex]-26 = -7x + 9[/tex]

Subtract 9 from each side

[tex]-26 - 9 = -7x + 9 - 9\\-35 = -7x[/tex]

Divide both sides by -7

[tex]\frac{-35}{-7} = \frac{-7x}{-7} \\5 = x\\x = 5[/tex]

  • For range value [tex]f(x)[/tex], of -33, find x by substituting [tex]f(x) = -33[/tex] into [tex]f(x) = -7x + 9[/tex]

[tex]-33 = -7x + 9[/tex]

Subtract 9 from each side

[tex]-33 - 9 = -7x + 9 - 9\\-42 = -7x[/tex]

Divide both sides by -7

[tex]\frac{-42}{-7} = \frac{-7x}{-7} \\6 = x\\x = 6[/tex]

  • For range value [tex]f(x)[/tex], of -40, find x by substituting [tex]f(x) = -40[/tex] into [tex]f(x) = -7x + 9[/tex]

[tex]-40 = -7x + 9[/tex]

Subtract 9 from each side

[tex]-40 - 9 = -7x + 9 - 9\\-49 = -7x[/tex]

Divide both sides by -7

[tex]\frac{-49}{-7} = \frac{-7x}{-7} \\7 = x\\x = 7[/tex]

Therefore, the values of the domain of the given function are:

A. 1

E. 5

F. 6

G. 7

Learn more about functions here:

https://brainly.com/question/11298198