Respuesta :
The intercept of a function are the values of the function when the graph crosses the x or y axes.
- The intercepts of [tex]\mathbf{f(x) = \frac 1{25}(|7x| + 5x)}[/tex] are 0
- The appropriate domain is [tex](-\infty, \infty)[/tex]
The function is given as:
[tex]\mathbf{f(x) = \frac 1{25}(|7x| + 5x)}[/tex]
Set x to 0, to calculate the y-intercept
[tex]\mathbf{f(0) = \frac 1{25}(|7 \times 0| + 5\times 0)}[/tex]
[tex]\mathbf{f(0) = \frac 1{25}(|0| + 0)}[/tex]
[tex]\mathbf{f(0) = \frac 1{25}(0)}[/tex]
[tex]\mathbf{f(0) = 0}[/tex]
Set f(x) to 0, to calculate the x-intercept
[tex]\mathbf{ \frac 1{25}(|7x| + 5x) = 0}[/tex]
Multiply through by 25
[tex]\mathbf{ |7x| + 5x = 0 \times 25}[/tex]
[tex]\mathbf{ |7x| + 5x = 0}[/tex]
Remove absolute bracket
[tex]\mathbf{ 7x + 5x = 0}[/tex]
[tex]\mathbf{ 12x = 0}[/tex]
Divide through by 12
[tex]\mathbf{ x = 0}[/tex]
Hence, the intercepts are 0
This interpretation is that:
Isaiah's starting position is on the ground (a step before the staircase)
Because he can move up and down the staircase, where the up and down movements represent negative and positive direction
The appropriate domain is: [tex](-\infty, \infty)[/tex]
Read more about domains and intercepts at:
https://brainly.com/question/24123211