A clothing store offers customers a holiday sale of 20% off the price of x items. A customer then has an additional 15% off coupon that can be used when checking out. Which of the following functions represents the final price P(x) of the items purchased?

P(x) = 0.68x
P(x) = 0.35x
P(x) = 0.05x
P(x) = 0.03x

Respuesta :

Answer:

  • A. P(x) = 0.68x

Step-by-step explanation:

Original price = x

Sale price  = 20% off:

  • x - 20%  =
  • x - 0.2x =
  • 0.8x

Further discount 15% off:

  • 0.8x - 15% =
  • 0.8x - 0.8x*0.15 =
  • 0.8x - 0.12x =
  • 0.68x

The function is:

  • P(x) = 0.68x

Correct choice is A

Let original price of items be x

First discount is 20%

Then price will b

[tex]\\ \sf\longmapsto x-20\%\;of\:x[/tex]

[tex]\\ \sf\longmapsto 80\%\:of\:x[/tex]

Now additional discount is 15%

[tex]\\ \sf\longmapsto 80\%\:of\:x-80\%\:of\:x\times 15\%[/tex]

[tex]\\ \sf\longmapsto 0.8x-0.8x(0.15)[/tex]

[tex]\\ \sf\longmapsto 0.8x-0.12x[/tex]

[tex]\\ \sf\longmapsto 0.68x[/tex]

Option A