9514 1404 393
Answer:
Step-by-step explanation:
1. The sum of squares is ...
(2a)^2 +(2a +2)^2 + (2a +4)^2 = 4a^2 +(4a^2 +8a +4) +(4a^2 +16a +16)
= 12a^2 +24a +20 . . . . . collect terms
= 4(3a^2 +6a +5) . . . . . . factor out 4
__
2. If the sum of the numbers is 24, we have ...
2a +(2a +2) +(2a +4) = 24
6a +6 = 24 . . . . . collect terms
a +1 = 4 . . . . . . . .divide by 6
a = 3 . . . . . . . subtract 1
2a = 6
2a +2 = 8
2a +4 = 10
The numbers are 6, 8, 10.
Check
The sum of squares is ...
4((a +2)(3a) +5) = 4(5(3·3) +5) = 4(50) = 200 . . . . as required