Hagrid
contestada

The function g(x) is a transformation of the parent function f(x). Decide how f(x) was transformed to make g(x).

A) Horizontal or vertical reflection.
B) Horizontal or vertical stretch.
C) Horizontal or vertical shift
D) Reflection across the line y=x

The function gx is a transformation of the parent function fx Decide how fx was transformed to make gx A Horizontal or vertical reflection B Horizontal or verti class=

Respuesta :

Answer:

B) Horizontal or vertical stretch.

Step-by-step explanation:

Given : The function g(x) is a transformation of the parent function f(x).

To Find: Decide how f(x) was transformed to make g(x).

Solution:

Vertical Stretch : [tex]g(x)=a f(x)[/tex]

Horizontal Stretch : [tex]g(x)=f(a x)[/tex]

Vertical reflection: [tex]g(x)=-f(x)[/tex]

Horizontal reflection: [tex]g(x)=f(-x)[/tex]

Vertical shift: [tex]g(x)=f(x)+k[/tex]

Horizontal shift: [tex]g(x)=f(x-h)[/tex]

The reflection of the point (x,y) across  the line y = x is the point (y, x).

By the given tables we can see that

[tex]g(x)=\frac{1}{9} f(x)[/tex]

Condition of Vertical stretch applies here .

So, Option B is correct.

B) Horizontal or vertical stretch.

Answer: horizontal or vertical stretch

Step-by-step explanation:

a p e x