Respuesta :

Square of quantity x plus three means : x+3/
quantity x plus eight means : (x+8)
quantity x minus two means : (x−2)

Therefore : f(x)=x+3 / (x+8)×(x−2)

R:x≥−3

Answer:

[-3,2)U(2,∞)  domain of the function

Step-by-step explanation:

We have given function : [tex]f(x) =\frac{\sqrt{x+3}}{(x+8)(x-2)}[/tex]

To find : The domain of the given function

Solution : Domain is where the function is defined

So, we distribute the function,

1) [tex]f(x) =\sqrt{x+3}[/tex]

[tex]x\geq-3[/tex]

2) [tex]f(x) =(x+8)(x-2)[/tex]

[tex]x<2[/tex]

Therefore, the domain of the function

[-3,2)U(2,∞)

or x∈real no. : -3≤x<2