Respuesta :

The logarithmic function that represents the data in the table is given by f(x) = [tex]\log_5x[/tex]

Answer: [tex]f(x)=\log_5x[/tex]


Step-by-step explanation:

Given table: x           f(x)


                    25            2  

                    125          3  

                    625          4

Here, we can write x as powers of 5 such that

[tex]25=5^2\\125=5^3\\625=5^4\\\Rightarrow\ f(x)= 5^{f(x)}[/tex]

Now, Taking log on both sides, we get

[tex]\log\ x=\log5^{f(x)}\\\Rightarrow\ \log\ x=f(x)\log5....[\log(a)^m=m\log(a)]\\\Rightarrow\ f(x)=\frac{\log\ x}{\log5}\\\Rightarrow\ f(x)=\log_5x......[\log_ab=\frac{\log\ b}{\log\ a}][/tex]

Therefore, A base-log function [tex]f(x)=\log_5x[/tex] represents data in the table