Answer:
Mean: [tex]93.2\; \rm ^{\circ} F[/tex].
Standard deviation: [tex]4.086\; \rm ^{\circ} F[/tex].
Step-by-step explanation:
Consider a random variable [tex]X[/tex] with mean [tex]\overline{X}[/tex] and variance [tex]{\rm Var}(X)[/tex].
If a random variable [tex]Y[/tex] is obtained by linearly transforming [tex]X[/tex] for some constants [tex]m \ne 0[/tex] and [tex]b[/tex], then the mean of [tex]Y\![/tex] would be:
[tex]\overline{Y} = m\, \overline{X} + b[/tex].
[tex]\mathrm{Var}(Y) = m^{2} \, \mathrm{Var}(X)[/tex].
The standard deviation of a random variable is the square root of its variance. Therefore, the standard deviation of [tex]Y[/tex] would be:
[tex]\begin{aligned}\mathrm{SD}(Y) &= \sqrt{\mathrm{Var}(Y)} \\ &= \sqrt{m^{2}\, \mathrm{Var}(X)} \\ &= m\, \sqrt{\mathrm{Var}(X)} \\ &= m\, \mathrm{SD}(X)\end{aligned}[/tex].
In this question, the random variable [tex]F[/tex] is obtained by linearly transforming [tex]C[/tex] using the constants [tex]m = (9/5)[/tex] and [tex]b = 32[/tex]. That is:
[tex]F = (9/5)\, C + 32[/tex].
It is given that mean [tex]\overline{C} = 34[/tex] while standard deviation [tex]\mathrm{SD}(X) = 2.27[/tex]. The mean and standard deviation of [tex]F[/tex] obtained from the linear transformation would be:
[tex]\begin{aligned}\overline{F} &= m\, \overline{C} + b \\ &= (9/5) \times 34 + 32\\ &= 93.2\end{aligned}[/tex].
[tex]\begin{aligned}\mathrm{SD}(F) &= m\, \mathrm{SD}(C) \\ &= (9/5) \times 2.27 = 4.086\end{aligned}[/tex].
Thus, when measured in degrees Fahrenheit, the corresponding mean would be [tex]93.2\; \rm ^{\circ} F[/tex] and and standard deviation would be [tex]4.086\; \rm ^{\circ} F[/tex].