please help me
please I will make you brainliest

[tex]\\ \sf\longmapsto a+\dfrac{1}{a}=\sqrt{3}[/tex]
[tex]\\ \sf\longmapsto \left(a+\dfrac{1}{a}\right)^3=\sqrt{3}^3[/tex]
[tex]\\ \sf\longmapsto a^3+\dfrac{1}{a^3}+\dfrac{3a^2}{a}+\dfrac{3a}{a^2}=3\sqrt{3}[/tex]
[tex]\\ \sf\longmapsto a^3+\dfrac{1}{a^3}+3a+\dfrac{3}{a}=3\sqrt{3}[/tex]
[tex]\\ \sf\longmapsto a^3+\dfrac{1}{a^3}=3\sqrt{3}-3a-\dfrac{3}{a}[/tex]
[tex]\\ \sf\longmapsto a^3+\dfrac{1}{a^3}=3\left(\sqrt{3}-a-\dfrac{1}{a}\right)[/tex]
[tex]\\ \sf\longmapsto a^3+\dfrac{1}{a^3}=3(0)[/tex]
[tex]\\ \sf\longmapsto a^3+\dfrac{1}{a^3}=0[/tex]
Answer:
Tn=a+(n−1)d, where a= First term, d= Difference between terms ... (2)
Equating (1) and (2)
6n+5=a+(n−1)d
6n+5=a+nd−d ..... (3)
Equating n terms:6n=nd
d=6 ...... (4)
Substituting (4) in (3)
6n+5=a+6n−6
5=a−6
a=11 ..... (5)
Now
Sn=2n(2a+(n−1)d)
Sn=2n(a+Tn) ....... (6)
Substituting (1) and (5) in (6)
Sn=2n(11+6n+5)
Sn=2n(16+6n)
Sn=n(8+3n)
Tn=a+(n−1)d, where a= First term, d= Difference between terms ... (2)
Equating (1) and (2)
6n+5=a+(n−1)d
6n+5=a+nd−d ..... (3)
Equating n terms:6n=nd
d=6 ...... (4)
Substituting (4) in (3)
6n+5=a+6n−6
5=a−6
a=11 ..... (5)
Now
Sn=2n(2a+(n−1)d)
Sn=2n(a+Tn) ....... (6)
Substituting (1) and (5) in (6)
Sn=2n(11+6n+5)
Sn=2n(16+6n)
Sn=n(8+3n)
Tn=a+(n−1)d, where a= First term, d= Difference between terms ... (2)
Equating (1) and (2)
6n+5=a+(n−1)d
6n+5=a+nd−d ..... (3)
Equating n terms:6n=nd
d=6 ...... (4)
Substituting (4) in (3)
6n+5=a+6n−6
5=a−6
a=11 ..... (5)
Now
Sn=2n(2a+(n−1)d)
Sn=2n(a+Tn) ....... (6)
Substituting (1) and (5) in (6)
Sn=2n(11+6n+5)
Sn=2n(16+6n)
Sn=n(8+3n)