Respuesta :

Answer:

[tex]h=6[/tex]

[tex]k=2.5[/tex]

[tex]m=\sqrt{21}[/tex]

[tex]n=3\sqrt{10}[/tex]

[tex]p=\sqrt{17}[/tex]

Step-by-step explanation:

We can use the Pythagorean Theorem in each case.

Pythagorean Theorem:

[tex]a^{2} +b^{2} =c^{2}[/tex]

Where [tex]a[/tex] and [tex]b[/tex] are two sides of a right-angle triangle and [tex]c[/tex] is Hypotenuse (the longest side opposite to the right angle)

For [tex]h[/tex]:

[tex]h^{2} +8^{2} =10^{2}[/tex]

[tex]h^{2} +64=100[/tex]

Subtract 64 from both sides:

[tex]h^{2} =100-64[/tex]

[tex]h^{2} =36\\[/tex]

[tex]h=\sqrt{36}[/tex]

[tex]h=6[/tex]

We follow the same process to find  [tex]k,m,n[/tex] and [tex]p[/tex].