Answer:
8(2x² - y)(2x² + y)
Step-by-step explanation:
32[tex]x^{4}[/tex] - 8y² ← factor out 8 from each term
= 8(4[tex]x^{4}[/tex] - y²) ← difference of squares which factors in general as
a² - b² = (a - b)(a + b) , then
4[tex]x^{4}[/tex] - y²
= [tex](2x^2)^{2}[/tex] - y²
= (2x² - y)(2x² + y)
Thus
32[tex]x^{4}[/tex] - 8y² = 8(2x² - y)(2x² + y)