A line passes through the points (-6, -8) and (-3,-7).

What is the equation of the line in Slope-Intercept Form?

A)y=1/3x-6

B) y=3x-6

C)y=1/3x+6

D) y=3x+6

Respuesta :

Answer:    A)  y =  ¹/₃ x - 6

Step-by-step explanation:  

        For us to write the equation for this line, we need to (1) find the slope of the line, and (2) use one of the points to write an equation:  

       The question gives us two points, (-6, -8) and (-3,-7), from which we can find the slope and later the equation of the line.

 

Finding the Slope  

The slope of the line (m) = (-8 - (-7)) ÷ (-6 - (-3))    

                                          =  -1 ÷  (-3)  

                                          =   ¹/₃  

Finding the Equation

We can now use the point-slope form (y - y₁) = m(x - x₁)) to write the equation for this line:  

                                 ⇒  y - (-7) =   ¹/₃ (x - (-3))  

  we could also transform this into the slope-intercept form ( y = mx + c)

                                   since  y + 7 =   ¹/₃ (x + 3)

                                         ⇒     y + 7 =  ¹/₃ x + 1

                                         

                                        ∴  y =  ¹/₃ x - 6

To test my answer, I have included a Desmos Graph that I graphed using the information provided in the question and my answer.

Ver imagen JoshEast