Respuesta :

Answer:

Parallel line, [tex]y=\frac{3x}{2} -\frac{5}{2}[/tex]

Perpendicular line, [tex]y=4-\frac{2x}{3}[/tex]

Step-by-step explanation:

For the parallel line, In the equation y=mx+c, we are trying to find c.

We know that m=[tex]\frac{3}{2}[/tex], so

we have the equation y=[tex]\frac{3x}{2} +c[/tex]

So we substitute the points we are given (3,2) into

[tex]2=\frac{3}{2}*3+c\\Thus, c= \frac{-5}{2}[/tex]

The final equation we get is

[tex]y=\frac{3x}{2} -\frac{5}{2}[/tex]

For the perpendicular line, we need to find the inverse of the slope.

The inverse of the slope [tex]\frac{3}{2} = -\frac{2}{3}[/tex]

So, we use this in our formula and also plug in the same coordinates we were given.

Therefore, we get:

[tex]2= -\frac{2}{3}*3+a\\a=4\\\\y=4-\frac{2x}{3}[/tex]