The distance between two points is the number of units between them
The possible value of x is -66
The given parameters are:
[tex]\mathbf{S = (-6,8)}[/tex]
[tex]\mathbf{T = (x,-3)}[/tex]
[tex]\mathbf{ST = 61}[/tex]
Distance ST is calculated using:
[tex]\mathbf{d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}[/tex]
So, we have:
[tex]\mathbf{d = \sqrt{(-6 - x)^2 + (8 - -3)^2}}[/tex]
[tex]\mathbf{d = \sqrt{(-6 - x)^2 + (8 +3)^2}}[/tex]
[tex]\mathbf{d = \sqrt{(-6 - x)^2 + 11^2}}[/tex]
Substitute 61 for d
[tex]\mathbf{ \sqrt{(-6 - x)^2 + 11^2} = 61}[/tex]
Square both sides
[tex]\mathbf{ (-6 - x)^2 + 11^2 = 61^2}[/tex]
[tex]\mathbf{ (-6 - x)^2 + 121 = 3721}[/tex]
Subtract 121 from both sides
[tex]\mathbf{ (-6 - x)^2 = 3721 - 121}[/tex]
[tex]\mathbf{ (-6 - x)^2 = 3600}[/tex]
Take square roots of both sides
[tex]\mathbf{ -6 - x = 60}[/tex]
Add 6 to both sides
[tex]\mathbf{ - x = 60 + 6}[/tex]
[tex]\mathbf{ - x = 66}[/tex]
Multiply both sides by -1
[tex]\mathbf{ x = -66}[/tex]
Hence, the possible value of x is -66
Read more about distance at:
https://brainly.com/question/2669795