Respuesta :

Answer:

[tex]\boxed {\sf x=6}[/tex]

Step-by-step explanation:

[tex]\sf 5(x - 3) + 2 = 5(2x - 8) - 3[/tex]

Use the Distributive property :

[tex]\boxed { \sf Multiply\: 5\: by \:x\: and \:5\: by\: 3:}[/tex]

→ [tex]\sf 5x-15+2[/tex]

→ [tex]\sf -15+2[/tex]

[tex]\sf =-13[/tex]

[tex]\sf 5x-13[/tex]

______________________

[tex]\sf 5\left(2x-8\right)-3[/tex]

[tex]\boxed {\sf Multiply\: 5 \: by \: 2x \: and \: 5\: by\: -8:}[/tex]

→ [tex]\sf 10x-40-3[/tex]

→ [tex]\sf -40-3=-43[/tex]

[tex]\sf 10x-43[/tex]

_______________

[tex]\sf 5x-13=10x-43[/tex]

[tex]\boxed {\sf Add\: 13 \:to\: both\: sides:}[/tex]

[tex]\sf 5x-13+13=10x-43+13[/tex]

[tex]\sf 5x=10x-30[/tex]

[tex]\boxed{\sf Subtract\: -10x\: from\: both\: sides:}[/tex]

[tex]\sf 5x-10x=10x-30-10x[/tex]

[tex]\sf -5x=-30[/tex]

[tex]\boxed{\sf Divide \:both \:sides\: by \:-5:}[/tex]

[tex]\sf \cfrac{-5x}{-5}=\cfrac{-30}{-5}[/tex]

[tex]\sf x=6[/tex]

___________________________

Space

Answer:

x = 6

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

Algebra I

  • Terms/Coefficients

Step-by-step explanation:

Step 1: Define

Identify

5(x - 3) + 2 = 5(2x - 8) - 3

Step 2: Solve for x

  1. (Parenthesis) Distribute:                                                                               5x - 15 + 2 = 10x - 40 - 3
  2. Simplify [Order of Operations]:                                                                     5x - 13 = 10x - 43
  3. [Subtraction Property of Equality] Subtract 10x on both sides:                  -5x - 13 = -43
  4. [Addition Property of Equality] Add 13 on both sides:                               -5x = -30
  5. [Division Property of Equality] Divide -5 on both sides:                               x = 6