Archer18
contestada

The displacement of an object in SHM is described by the equation
[tex] x = cos\binom{2\pi}{3}t[/tex]
where x is in meters and t in seconds. Determine the velocity of the object at t = 0.6 s. ​

Respuesta :

Answer:

[tex]-1.99\:\mathrm{m/s}[/tex]

Explanation:

Assuming that the equation is intended to be [tex]\displaystyle x=\cos\left(\frac{2\pi}{3}t\right)[/tex], we can find the velocity vs. time equation by taking the first derivative with respect to [tex]t[/tex]:

[tex]\displaystyle \frac{dx}{dt}=\frac{d}{dt}\left(\cos\left(\frac{2\pi}{3}t\right)\right)[/tex]

Recall the chain rule:

[tex]\displaystyle f(g(x))'=f'(g(x))\cdot g'(x)[/tex]

Therefore,

[tex]\displaystyle \frac{d}{dt}\left(\cos\left(\frac{2\pi}{3}t\right)\right)=-\sin\left(\frac{2\pi}{3}t\right)\cdot \frac{2\pi}{3}[/tex]

Therefore, the velocity vs. time equation of the object is [tex]\displaystyle v=-\sin\left(\frac{2\pi}{3}t\right)\cdot \frac{2\pi}{3}[/tex].

Substitute [tex]t=0.6\text{ s}[/tex] into this equation to find the velocity at that given time:

[tex]\displaystyle v=-\sin\left(\frac{2\pi}{3}(0.6)\right)\cdot \frac{2\pi}{3}\approx \boxed{-1.99\text{ m/s}}[/tex]