The function h(x) in its simplest form is [tex]h(x) = 4log_2(x)- 2[/tex]
The functions are given as:
[tex]f(x) = log_2(x) + 2[/tex]
[tex]g(x) = log_2(x^3) - 4[/tex]
This is given as:
[tex]h(x) = f(x) + g(x)[/tex]
So, we have:
[tex]h(x) = log_2(x) + 2 + log_2(x^3) - 4[/tex]
Collect like terns
[tex]h(x) = log_2(x) + log_2(x^3)+ 2 - 4[/tex]
[tex]h(x) = log_2(x) + log_2(x^3)- 2[/tex]
Apply law of logarithm
[tex]h(x) = log_2(x \times x^3)- 2[/tex]
[tex]h(x) = log_2(x^4)- 2[/tex]
Apply law of logarithm
[tex]h(x) = 4log_2(x)- 2[/tex]
Hence, function h(x) in its simplest form is [tex]h(x) = 4log_2(x)- 2[/tex]
The equations are not given.
So, the question cannot be solved
Read more about composite functions at:
https://brainly.com/question/10687170