Respuesta :
Answer:
Given equation:
- [tex](3^{p+1} - 3^p) /(2 *3^p) = 1[/tex]
Solving for p:
- [tex]3^{p+1} - 3^p = 2 *3^p[/tex]
- [tex]3*3^p - 3^p = 2 *3^p[/tex]
- [tex]2 *3^p =2 *3^p[/tex]
p - any real number
We can state the initial expression is correct for any value of p.
Answer:
True for all p
Step-by-step explanation:
Given equation:
[tex]\dfrac{3^{p+1}-3^{p}}{2 \times 3^{p}}=1[/tex]
Multiply both sides by [tex]2 \times 3^p[/tex]:
[tex]\implies 3^{p+1}-3^p=2 \times 3^p[/tex]
Add [tex]3^p[/tex] to both sides:
[tex]\implies 3^{p+1}-3^p+3^p=2 \times 3^p+3^p[/tex]
[tex]\implies 3^{p+1}=3 \times 3^p[/tex]
Rewrite 3 as 3¹:
[tex]\implies 3^{p+1}=3^1 \times 3^p[/tex]
[tex]\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^{b+c}[/tex]
[tex]\implies 3^{p+1}=3^{1+p}[/tex]
[tex]\implies 3^{p+1}=3^{p+1}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{f(x)}=a^{g(x)} \implies f(x)=g(x):[/tex]
[tex]\implies p+1=p+1[/tex]
Subtract 1 from both sides:
[tex]\implies p+1-1=p+1-1[/tex]
[tex]\implies p=p[/tex]
Therefore as both sides are equal, true for all p.