22. The function C= 75x + 2600 gives the cost, in dollars, for a small company to
manufacture x items. The function R = 225x-X gives the revenue, also in
dollars, for selling x items. How many items should the company produce so
that the cost and revenue are equal?

Respuesta :

Given:

[tex]c=75x+2600\\[/tex]; where c is cost in dollars and x is items sold

[tex]r=225x-x^{2}[/tex]; where r is revenue in dollars and x is items sold

Equations:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

Answer:

For cost and revenue to be equal, the company should produce and sell 20 or 130 items.

[tex]x=20\\[/tex] or [tex]x=130[/tex]

Step-by-step explanation:

1. Set the equations equal to each other; [tex]75x+2600=225x-x^2[/tex]

2. Subtract [tex]225x-x^2[/tex] from each side; [tex]x^2-150x+2600=0\\[/tex]

3. Determine quadratic formula variables; [tex]a=1; b=-150; c=2600[/tex]

4. Substitute [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] into quadratic formula; [tex]x=\frac{-(150)\±\sqrt{(-150)^2-4*1*260}}{2*1}[/tex]

5. Solve quadratic formula; [tex]x_{1} = 130[/tex], [tex]x_{2}=20[/tex]

Ver imagen jmidwest