(1 point) Use the graph below to find exact values of the indicated derivatives, or state that they do not exist. If a derivative does not exist, enter dne in the answer blank. The graph of f(x) is black and has a sharp corner at x = 2. The graph of g(x) is blue.
Let h(x) = f(g(x)). Find
A. h'(1) =
B. h'(2) =
C. h'(3) =

1 point Use the graph below to find exact values of the indicated derivatives or state that they do not exist If a derivative does not exist enter dne in the an class=

Respuesta :

Derivatives can be calculated from graphed functions.

The values of the derivatives are:

The given parameter is:

[tex]\mathbf{h(x) = f(g(x))}[/tex]

Start by calculating the equations of f(x) and g(x)

Graph f(x)

The slopes of f(x) are: 3/2 and -3/2

So, the equations are:

[tex]\mathbf{f(x) = \frac{3}{2}x,\ 0 \le x \le 2}[/tex]

[tex]\mathbf{f(x) = -\frac{3}{2}x,\ x \ge 2}[/tex]

Graph g(x)

The slope of g(x) is: -1/2

So, the equation is:

[tex]\mathbf{g(x) = -\frac 12x}[/tex]

For x = 1 and x = 2, we have:

So, we have:

[tex]\mathbf{h(x) = f(g(x))}[/tex]

Where:

[tex]\mathbf{f(x) = \frac{3}{2}x\ 0 \le x \le 2}[/tex] and [tex]\mathbf{g(x) = -\frac 12x}[/tex]

[tex]\mathbf{h(x) = f(g(x))}[/tex] becomes

[tex]\mathbf{h(x) = \frac{3}{2}(-\frac{1}{2}x)}[/tex]

Open brackets

[tex]\mathbf{h(x) = -\frac{3}{4}x}[/tex]

Differentiate

[tex]\mathbf{h'(x) = -\frac{3}{4}}[/tex]

So:

[tex]\mathbf{h'(1) = -\frac{3}{4}}[/tex]

[tex]\mathbf{h'(2) = -\frac{3}{4}}[/tex]

For x = 3, we have:

[tex]\mathbf{h(x) = f(g(x))}[/tex]

Where:

[tex]\mathbf{f(x) = -\frac{3}{2}x\ x \ge 2}[/tex] and [tex]\mathbf{g(x) = -\frac 12x}[/tex]

[tex]\mathbf{h(x) = f(g(x))}[/tex] becomes

[tex]\mathbf{h(x) = -\frac{3}{2}(-\frac{1}{2}x)}[/tex]

[tex]\mathbf{h(x) = \frac{3}{4}x}[/tex]

Differentiate

[tex]\mathbf{h'(x) = \frac{3}{4}}[/tex]

Substitute 3 for x

[tex]\mathbf{h'(3) = \frac{3}{4}}[/tex]

Hence, the values of the derivatives are:

[tex]\mathbf{h'(1) = -\frac{3}{4}}[/tex], [tex]\mathbf{h'(2) = -\frac{3}{4}}[/tex] and [tex]\mathbf{h'(3) = \frac{3}{4}}[/tex]

Read more about graphed functions at:

https://brainly.com/question/11804653