P=[−3610−4] , Q=[−2571] , R=[4−20813]

Given the three matrices above, evaluate P+Q.

P+Q=[acbd]. Find the values of a, b, c, and d.

Respuesta :

Adding the matrices, it is found that the values are: [tex]a = -5, b = 8, c = 11, d = -3[/tex]

The values of a, b, c and d is determined by the addition of matrices P and Q, that is:

[tex]P + Q = \left[\begin{array}{cc}a&c\\b&d\end{array}\right][/tex]

We have that the matrices are:

[tex]P = \left[\begin{array}{cc}-3&6\\10&-4\end{array}\right][/tex]

[tex]Q = \left[\begin{array}{cc}-2&5\\7&1\end{array}\right][/tex]

Then:

[tex]P + Q = \left[\begin{array}{cc}-3&6\\10&-4\end{array}\right] + \left[\begin{array}{cc}-2&5\\7&1\end{array}\right] = \left[\begin{array}{cc}-3-2&6+5\\1+7&-4+1\end{array}\right] = \left[\begin{array}{cc}-5&11\\8&-3\end{array}\right][/tex]

Finally:

[tex]\left[\begin{array}{cc}-5&11\\8&-3\end{array}\right] = \left[\begin{array}{cc}a&c\\b&d\end{array}\right][/tex]

Thus, the values are:

[tex]a = -5, b = 8, c = 11, d = -3[/tex]

A similar problem is given at https://brainly.com/question/24810141