Respuesta :
Answer:
- x = 7, y = 8
Step-by-step explanation:
Given numbers in order:
- 4, 6, x, y, 10
The mean is same as median.
The median is x as middle number. Since x is a whole number, the mean is also a whole number.
x and y can be selected from 7, 8 or 9 (numbers between 6 and 10).
The mean is:
- (4 + 6 + x + y + 10)/5 =
- (20 + x + y)/5 =
- 4 + (x + y)/5
It should be a whole number, so (x + y) should be divisible by 5.
The option is (7 + 8) = 15, and 9 is excluded.
Let's verify:
- Median = x = 7
- Mean = 4 + (7 + 8)/5 = 4 + 3 = 7
- 4,6,x,y,10
Mean:-
[tex]\\ \sf\longmapsto \dfrac{4+6+x+y+10}{5}[/tex]
[tex]\\ \sf\longmapsto \dfrac{x+y+20}{5}[/tex]
Median:-
- n=5
- M(D)=n+1/2=5+1/2=3rd term
[tex]\\ \sf\longmapsto M(D)=x[/tex]
Compare
[tex]\\ \sf\longmapsto \dfrac{x+y+20}{5}=x[/tex]
[tex]\\ \sf\longmapsto x+y+20=5x[/tex]
[tex]\\ \sf\longmapsto 4x=y+20[/tex]
[tex]\\ \sf\longmapsto x=y/4+5[/tex]
[tex]\\ \sf\longmapsto x[/tex]
Take pair of (7,8)
[tex]\\ \sf\longmapsto 7=8/4+5\implies 7=2+5[/tex]
Verified
Hence
- x=7
- y=8