contestada

A population of bacteria is 8500 on day 1, 9350 on day 2, and 10,285 on day 3. What will the population be on day 30?.

Respuesta :

Population are often represented using exponential functions

The population of the bacteria on day 30 is 134837

Let x represent the number of days, and y represents the population.

So, we have: (x,y) = (1,8500), (2, 9350) (3, 10285)

An exponential functions is represented as [tex]\mathbf{y = ab^x}[/tex]

So, we have:

[tex]\mathbf{8500 = ab}[/tex]

[tex]\mathbf{9350 = ab^2}[/tex]

Divide both equations

[tex]\mathbf{\frac{9350}{8500} = \frac{ab^2}{ab}}[/tex]

[tex]\mathbf{1.1 = b}[/tex]

Rewrite as:

[tex]\mathbf{b = 1.1 }[/tex]

Substitute 1.1 for b in [tex]\mathbf{8500 = ab}[/tex]

[tex]\mathbf{ 8500 = 1.1a}[/tex]

Divide both sides by 1.1

[tex]\mathbf{ 7727.3 = a}[/tex]

Rewrite as:

[tex]\mathbf{ a = 7727.3 }[/tex]

So, we have:

[tex]\mathbf{y = ab^x}[/tex]

[tex]\mathbf{y = 7727.3 \times 1.1^x}[/tex]

On day 30, we have: x = 30.

So, the equation becomes

[tex]\mathbf{y = 7727.3 \times 1.1^{30}}[/tex]

[tex]\mathbf{y = 134837}[/tex]

Hence, the population of the bacteria on day 30 is 134837

Read more about exponential functions at:

https://brainly.com/question/11487261