The amount of Plutonium that remains after 36 months is 0.05
The equation for the amount of Plutonium after t months is
[tex]\mathbf{P(t) = 12e^{-0.1507t}}[/tex]
After 36 months; we have: t = 36.
Substitute 36 for t in P(t).
So, we have:
[tex]\mathbf{P(36) = 12e^{-0.1507 \times 36}}[/tex]
Simplify the exponent
[tex]\mathbf{P(36) = 12e^{-5.4252}}[/tex]
Evaluate the exponent
[tex]\mathbf{P(36) = 12 \times 0.004404}[/tex]
Multiply
[tex]\mathbf{P(36) = 0.052848}[/tex]
Approximate to 2 decimal places
[tex]\mathbf{P(36) = 0.05}[/tex]
Hence, the amount that remains is 0.05
Read more about exponential functions at:
https://brainly.com/question/11487261