Respuesta :
The formula for a function of the form [tex]y = a\cdot e^{-x} + b\cdot x[/tex] with global minimum at [tex](1, 10)[/tex] is [tex]y = 5\cdot e^{1-x}+5\cdot x[/tex].
We can use first and second derivative tests to determine all coefficients of the function described in statement so that the point given is an absolute minimum. The expressions for such tests are introduced below:
FDT
[tex]-a\cdot e^{-x}+b = 0[/tex] (1)
[tex]b = a\cdot e^{-x}[/tex]
SDT
[tex]y''=a\cdot e^{-x}[/tex] (2)
Where [tex]y'' > 0[/tex].
If we know that [tex](x, y) = (1, 10)[/tex], then we have the following system:
[tex]10 = a\cdot e^{-1}+b[/tex] (3)
[tex]b = a\cdot e^{-1}[/tex] (4)
[tex]y'' = a\cdot e^{-1}[/tex] (5)
By (4) in (3):
[tex]10 = 2\cdot a\cdot e^{-1}[/tex]
[tex]a = \frac{10}{2\cdot e^{-1}}[/tex]
[tex]a = 5\cdot e[/tex]
By (5) we prove that [tex]y'' > 0[/tex], and we get the value of [tex]b[/tex] by (4):
[tex]b = 5[/tex]
Thus, the formula for a function of the form [tex]y = a\cdot e^{-x} + b\cdot x[/tex] with global minimum at [tex](1, 10)[/tex] is [tex]y = 5\cdot e^{1-x}+5\cdot x[/tex].
We kindly invite to check this question on first and second derivative tests: https://brainly.com/question/6097697
