The result of the product [tex](s^2+5s)(s^3+4s^2)[/tex] is [tex]s^5+9s^4+20s^3[/tex]
The product is given as:
[tex](s^2+5s)(s^3+4s^2)[/tex]
Rewrite as:
[tex](s^2+5s)(s^3+4s^2) = (s^2+5s) \times (s^3+4s^2)[/tex]
Expand the expression on the right-hand side
[tex](s^2+5s)(s^3+4s^2) = s^2\times (s^3+4s^2)+5s \times (s^3+4s^2)[/tex]
Distribute the expressions
[tex](s^2+5s)(s^3+4s^2) = s^5+4s^4+5s^4+20s^3[/tex]
Evaluate like terms
[tex](s^2+5s)(s^3+4s^2) = s^5+9s^4+20s^3[/tex]
Hence, the result of the product [tex](s^2+5s)(s^3+4s^2)[/tex] is [tex]s^5+9s^4+20s^3[/tex]
Read more about products at:
https://brainly.com/question/24963015