Respuesta :
Answer:
(4, -2)
Step-by-step explanation:
Use the expression for y given by the first equation to substitute for y in the second equation.
2(2x -10) = x -8 . . . substitute for y
4x -20 = x -8 . . . . . eliminate parentheses
3x = 12 . . . . . . . . add 20-x
x = 4 . . . . . . . . .divide by 3
y = 2(4) -10 = -2 . . . substitute for x in the first equation
The solution is (x, y) = (4, -2).
[tex]\huge\bf\underline{\underline{\pink{A}\orange{N}\blue{S}\green{W}\red{E}\purple{R:-}}}[/tex]
We've been given to find out the values of x & y from the two given linear equations by substitution method.
Here we have,
- y = 2x - 10 - - - - - (1)
- 2y = x - 8 - - - - - (2)
As we have given the value of y i.e (y = 2x - 10) placing this value of y in the second equation we get,
[tex]:\implies\tt{2(2x - 10) = x - 8}[/tex]
[tex]:\implies\tt{4x - 20 = x - 8}[/tex]
[tex]:\implies\tt{4x - x = - 8 + 20}[/tex]
[tex]:\implies\tt{3x = 12}[/tex]
[tex]:\implies\tt{x = \frac{12}{3} }[/tex]
[tex]:\implies\tt{x = 4}[/tex]
Placing x = 4 in equation (1) we get,
[tex]:\implies\tt{y = 2x - 10}[/tex]
[tex]:\implies\tt{y = 2 \times 4 - 10}[/tex]
[tex]:\implies\tt{y = 8 - 10}[/tex]
[tex]:\implies\tt{y = - 2}[/tex]
- The solution of the given system for linear equation is (x,y) = (4,-2)