Respuesta :

Answer:

  (4, -2)

Step-by-step explanation:

Use the expression for y given by the first equation to substitute for y in the second equation.

  2(2x -10) = x -8 . . . substitute for y

  4x -20 = x -8 . . . . . eliminate parentheses

  3x = 12 . . . . . . . . add 20-x

  x = 4 . . . . . . . . .divide by 3

  y = 2(4) -10 = -2 . . . substitute for x in the first equation

The solution is (x, y) = (4, -2).

[tex]\huge\bf\underline{\underline{\pink{A}\orange{N}\blue{S}\green{W}\red{E}\purple{R:-}}}[/tex]

We've been given to find out the values of x & y from the two given linear equations by substitution method.

Here we have,

  • y = 2x - 10 - - - - - (1)

  • 2y = x - 8 - - - - - (2)

As we have given the value of y i.e (y = 2x - 10) placing this value of y in the second equation we get,

[tex]:\implies\tt{2(2x - 10) = x - 8}[/tex]

[tex]:\implies\tt{4x - 20 = x - 8}[/tex]

[tex]:\implies\tt{4x - x = - 8 + 20}[/tex]

[tex]:\implies\tt{3x = 12}[/tex]

[tex]:\implies\tt{x = \frac{12}{3} }[/tex]

[tex]:\implies\tt{x = 4}[/tex]

Placing x = 4 in equation (1) we get,

[tex]:\implies\tt{y = 2x - 10}[/tex]

[tex]:\implies\tt{y = 2 \times 4 - 10}[/tex]

[tex]:\implies\tt{y = 8 - 10}[/tex]

[tex]:\implies\tt{y = - 2}[/tex]

  • The solution of the given system for linear equation is (x,y) = (4,-2)