Respuesta :

Answer:

[tex]\begin{bmatrix}y>2+x\\ y>\frac{2-x}{2}\end{bmatrix}[/tex]

Step-by-step explanation:

Step 1: Solve the system of equations

[tex]\begin{bmatrix}-x+y>2\\ x+2y>2\end{bmatrix}[/tex]

Isolate [tex]y[/tex] for [tex]-x+y>2[/tex]

[tex]\mathrm{Add\:}x\mathrm{\:to\:both\:sides}[/tex]

[tex]-x+y+x>2+x[/tex]

[tex]y>2+x[/tex]

Isolate [tex]y[/tex] for [tex]x+2y>2[/tex]

[tex]\mathrm{Subtract\:}x\mathrm{\:from\:both\:sides}[/tex]

[tex]2y>2-x[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}2[/tex]

[tex]\frac{2y}{2}>\frac{2}{2}-\frac{x}{2}[/tex]

[tex]y>\frac{2-x}{2}[/tex]

[tex]\bold{=\begin{bmatrix}y>2+x\\ y>\frac{2-x}{2}\end{bmatrix}}[/tex]

Step 2: Graph

Instructions for graphing:

[tex]\mathrm{1.\:Graph\:each\:inequality\:separately.}[/tex]

[tex]\mathrm{2.\:Choose\:a\:test\:point\:to\:determine\:which\:side\:of\:the\:line\:needs\:to\:be\:shaded.}[/tex]

[tex]3. \mathrm{The\:solution\:to\:the\:system\:will\:be\:the\:area\:where\:the\:shadings\:}\\\mathrm{from\:each\:inequality\:overlap\:one\:another.}[/tex]

When done, it should look like this:

Ver imagen ThePerfectionOne01