The quadrilateral with vertices at the points: (0,0), (3,2), (6,0), (3,-2) is a square
The vertices (or coordinates) of the quadrilateral is given as:
[tex](x,y) = (0,0), (3,2), (6,0), (3,-2)[/tex]
Calculate the distance between subsequent points, using the following distance formula
[tex]d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]
So, we have:
[tex]AB = \sqrt{(0 -3)^2 + (0 -2)^2}[/tex]
[tex]AB = \sqrt{13}[/tex]
[tex]BC = \sqrt{(3 -6)^2 + (2 -0)^2}[/tex]
[tex]BC = \sqrt{13}[/tex]
[tex]CD = \sqrt{(6 -3)^2 + (0 --2)^2}[/tex]
[tex]CD = \sqrt{13}[/tex]
[tex]DA = \sqrt{(3 -0)^2 + (-2 -0)^2}[/tex]
[tex]DA = \sqrt{13}[/tex]
Notice that the sides of the quadrilateral are congruent.
Hence, the quadrilateral is a square
Read more about quadrilaterals at:
https://brainly.com/question/1543115