Respuesta :
The value of [tex]n[/tex] such that [tex]\sqrt[3]{n+\sqrt{n^{2}+8}}+ \sqrt[3]{n-\sqrt{n^{2}+8}} = 8 [/tex] is [tex]280[/tex].
Procedure - Determination of the root of radical function
In this question we need to find the root of the radical function [tex]\sqrt[3]{n+\sqrt{n^{2}+8}}+ \sqrt[3]{n-\sqrt{n^{2}+8}} = 8 [/tex], which must be simplified by algebraic means.
First, we need to elevate each side of the expression by third power:
[tex]\left(\sqrt[3]{n+\sqrt{n^{2}+8}} + \sqrt[3]{n+\sqrt{n^{2}+8}} \right)^{3} = 512[/tex]
[tex]2\cdot n + 3\cdot \sqrt[3]{(n+\sqrt{n^{2}+8})^{2}\cdot (n-\sqrt{n^{2}+8})} + 3\cdot \sqrt[3]{(n-\sqrt{n^{2}+8})^{2}\cdot (n+\sqrt{n^{2}+8})} = 512[/tex]
[tex]2\cdot n -6\cdot (\sqrt[3]{n+\sqrt{n^{2}+8}} + \sqrt[3]{n-\sqrt{n^{2}+8}}) = 512[/tex]
[tex]2\cdot n - 6\cdot (8) = 512[/tex]
[tex]n = 280[/tex]
The value of [tex]n[/tex] such that [tex]\sqrt[3]{n+\sqrt{n^{2}+8}}+ \sqrt[3]{n-\sqrt{n^{2}+8}} = 8 [/tex] is [tex]280[/tex]. [tex]\blacksquare[/tex]
To learn more on radical functions, we kindly invite to check this verified question: https://brainly.com/question/13430746