Respuesta :
h(x) = g(f(x))
Take f(x) and plug it into g(x).
g(f(x)) = sqrt{4x}
g(f(x)) = sqrt{4(3x^3 + 8x^2)}
g(f(x)) = sqrt{12x^3 + 32x^2}
We are done.
Answer:
h(x) = sqrt{12x^3 + 32x^2}
The composite function as shown is [tex]g(f(x)) =\sqrt{12x^3+32x^2}[/tex]
Composite functions
Given the following fnctions
[tex]f(x) = 3x^3 + 8x^2\\g(x) = \sqrt{4x}[/tex]
The composite function g(f(x)) is expressed as:
[tex]g(f(x)) =g(3x^3 + 8x^2)\\g(f(x) )=\sqrt{4(3x^3 + 8x^2)} \\g(f(x)) =\sqrt{12x^3+32x^2}[/tex]
Hence the composite function as shown is [tex]g(f(x)) =\sqrt{12x^3+32x^2}[/tex]
Learn more on composite function here: https://brainly.com/question/10687170