Respuesta :

h(x) = g(f(x))

Take f(x) and plug it into g(x).

g(f(x)) = sqrt{4x}

g(f(x)) = sqrt{4(3x^3 + 8x^2)}

g(f(x)) = sqrt{12x^3 + 32x^2}

We are done.

Answer:

h(x) = sqrt{12x^3 + 32x^2}

The composite function as shown is [tex]g(f(x)) =\sqrt{12x^3+32x^2}[/tex]

Composite functions

Given the following fnctions

[tex]f(x) = 3x^3 + 8x^2\\g(x) = \sqrt{4x}[/tex]

The composite function g(f(x)) is expressed as:

[tex]g(f(x)) =g(3x^3 + 8x^2)\\g(f(x) )=\sqrt{4(3x^3 + 8x^2)} \\g(f(x)) =\sqrt{12x^3+32x^2}[/tex]

Hence the composite function as shown is [tex]g(f(x)) =\sqrt{12x^3+32x^2}[/tex]

Learn more on composite function here: https://brainly.com/question/10687170