Respuesta :
[tex]\tt (1 - sin ^2x)\times(1+tan^2x) = 1[/tex]
L.H.S
[tex]\tt cos^2x \times sec^2x[/tex]
[tex]\tt cos^2x \times \frac{1}{cos^2x}[/tex]
[tex]\tt \cancel{ cos^2x} \times\cancel{ \frac{1}{cos^2x}}[/tex]
[tex]\tt 1[/tex]
R.H.S
Hence proved
Step-by-step explanation:
[tex]{ \tt{ \blue{(1 - { \sin}^{2}x )(1 + { \tan }^{2}x) = 1 }}}[/tex]
• Remember → 1 + tan²x = sec²x
[tex] = { \tt{ \blue{(1 - { \sin }^{2}x)( { \sec}^{2}x) }}}[/tex]
• But sec²x → 1/cos²x
[tex] = { \tt{ \blue{(1 - { \sin}^{2} x)( \frac{1}{ \cos {}^{2} x} )}} }\\ \\ = { \blue {\tt{ \frac{1 - { \sin }^{2}x }{ { \cos }^{2}x } }}}[/tex]
• Remember from the first identity of trignometry;
[ cos²x + sin²x = 1 ].
• Therefore: [ cos²x = 1 - sin²x ]
[tex] = { \blue{\rm{ \frac{1 - { \sin}^{2}x }{1 - { \sin }^{2}x } }}} \\ \\ { \rm{ \blue{= 1 \: }}}[/tex]
Hence proved.