ChallengE
See attachment and answer :)

[tex]\displaystyle{\sf\:4\:\sqrt{48}\:-\:\dfrac{5}{2}\:\sqrt{\dfrac{1}{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\boxed{\red{\sf\:4\:\sqrt{48}\:-\:\dfrac{5}{2}\:\sqrt{\dfrac{1}{3}}\:+\:6\:\sqrt{3}\:=\:\dfrac{127\:\sqrt{3}}{6}}}}[/tex]
Step-by-step-explanation:
We have given an expression.
We have to simplify the expression.
The given expression is
[tex]\displaystyle{\sf\:4\:\sqrt{48}\:-\:\dfrac{5}{2}\:\sqrt{\dfrac{1}{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\implies\sf\:4\:\sqrt{16\:\times\:3}\:-\:\dfrac{5}{2}\:\sqrt{\dfrac{1}{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\boxed{\pink{\sf\:\sqrt{a\:\times\:b}\:=\:\sqrt{a}\:\times\:\sqrt{b}\:}}\:\cdots\sf\:a\:,\:b\:\geq\:0}[/tex]
[tex]\displaystyle{\implies\sf\:4\:\sqrt{16}\:\times\:\sqrt{3}\:-\:\dfrac{5}{2}\:\sqrt{\dfrac{1}{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\implies\sf\:4\:\times\:4\:\sqrt{3}\:-\:\dfrac{5}{2}\:\sqrt{\dfrac{1}{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\boxed{\blue{\sf\:\sqrt{\dfrac{a}{b}}\:=\:\dfrac{\sqrt{a}}{\sqrt{b}}\:}}\:\cdots\sf\:b\: > \:0}[/tex]
[tex]\displaystyle{\implies\sf\:16\:\sqrt{3}\:-\:\dfrac{5}{2}\:\times\:\dfrac{\sqrt{1}}{\sqrt{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\implies\sf\:16\:\sqrt{3}\:-\:\dfrac{5}{2}\:\times\:\dfrac{1}{\sqrt{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\implies\sf\:\dfrac{16\:\sqrt{3}\:\times\:2\:\sqrt{3}\:-\:5}{2\:\sqrt{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\implies\sf\:\dfrac{16\:\times\:2\:\sqrt{3}\:\times\:\sqrt{3}\:-\:5}{2\:\sqrt{3}}\:+\:6\:\sqrt{3}} \\ \\\displaystyle{\implies\sf\:\dfrac{32\:\times\:3\:-\:5}{2\:\sqrt{3}}\:+\:6\:\sqrt{3}}[/tex]
[tex]\displaystyle{\implies\sf\:\dfrac{8\:\times\:4\:\times\:3\:-\:5\:+\:(\:6\:\sqrt{3}\:\times\:2\:\sqrt{3}\:)}{2\:\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{8\:\times\:12\:-\:5\:+\:(\:6\:\times\:2\:\times\:\sqrt{3}\:\times\:\sqrt{3}\:)}{2\:\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{8\:\times\:12\:-\:5\:+\:(\:12\:\times\:3\:)}{2\:\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{8\:\times\:12\:-\:5\:+\:12\:\times\:3}{2\:\sqrt{3}}} \\ \\ \\ \displaystyle{\implies\sf\:\dfrac{8\:\times\:12\:+\:12\:\times\:3\:-\:5}{2\:\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{12\:(\:8\:+\:3\:)\:-\:5}{2\:\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{12\:\times\:11\:-\:5}{2\:\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{132\:-\:5}{2\:\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{127}{2\:\sqrt{3}}} \\ \\ \\ \displaystyle{\implies\sf\:\dfrac{127}{2\:\sqrt{3}}\:\times\:\dfrac{\sqrt{3}}{\sqrt{3}}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{127\:\sqrt{3}}{2\:\times\:3}} \\ \\ \\\displaystyle{\implies\sf\:\dfrac{127\:\sqrt{3}}{6}} \\ \\ \\ \displaystyle{\therefore\:\underline{\boxed{\red{\sf\:4\:\sqrt{48}\:-\:\dfrac{5}{2}\:\sqrt{\dfrac{1}{3}}\:+\:6\:\sqrt{3}\:=\:\dfrac{127\:\sqrt{3}}{6}}}}}[/tex]