A cylindrical tank with radius 5 m is being filled with water at a rate of 3 m^3/min. How fast is the height of the water increasing

Respuesta :

Answer:

[tex]\frac{3}{25\pi}[/tex] meters per minute

Step-by-step explanation:

Given:

[tex]V=\pi r^2h[/tex]

[tex]r=5[/tex]

[tex]\frac{dV}{dt}=3[/tex]

[tex]\frac{dh}{dt}=?[/tex]

Substitute r=5:

[tex]V=\pi r^2h[/tex]

[tex]V=\pi(5)^2h[/tex]

[tex]V=25\pi h[/tex]

Differentiate both sides:

[tex]\frac{d}{dt}V=\frac{d}{dt}(25\pi h)[/tex]

[tex]\frac{dV}{dt}=25\pi\frac{dh}{dt}[/tex]

Solve for dh/dt:

[tex]3=25\pi\frac{dh}{dt}[/tex]

[tex]\frac{3}{25\pi}=\frac{dh}{dt}[/tex]

Therefore, the height of the water is increasing at a rate of [tex]\frac{3}{25\pi}[/tex] meters per minute.