Respuesta :
Answer:7 x 2 − 14 x + 5
Step-by-step explanation:
1 In general, given a{x}^{2}+bx+cax
2
+bx+c, the factored form is:
a(x-\frac{-b+\sqrt{{b}^{2}-4ac}}{2a})(x-\frac{-b-\sqrt{{b}^{2}-4ac}}{2a})
a(x−
2a
−b+
b
2
−4ac
)(x−
2a
−b−
b
2
−4ac
)
2 In this case, a=7a=7, b=-14b=−14 and c=5c=5.
7(x-\frac{14+\sqrt{{(-14)}^{2}-4\times 7\times 5}}{2\times 7})(x-\frac{14-\sqrt{{(-14)}^{2}-4\times 7\times 5}}{2\times 7})
7(x−
2×7
14+
(−14)
2
−4×7×5
)(x−
2×7
14−
(−14)
2
−4×7×5
)
3 Simplify.
7(x-\frac{14+2\sqrt{14}}{14})(x-\frac{14-2\sqrt{14}}{14})
7(x−
14
14+2
14
)(x−
14
14−2
14
)
4 Factor out the common term 22.
7(x-\frac{2(7+\sqrt{14})}{14})(x-\frac{14-2\sqrt{14}}{14})
7(x−
14
2(7+
14
)
)(x−
14
14−2
14
)
5 Simplify \frac{2(7+\sqrt{14})}{14}
14
2(7+
14
)
to \frac{7+\sqrt{14}}{7}
7
7+
14
.
7(x-\frac{7+\sqrt{14}}{7})(x-\frac{14-2\sqrt{14}}{14})
7(x−
7
7+
14
)(x−
14
14−2
14
)
6 Simplify \frac{7+\sqrt{14}}{7}
7
7+
14
to 1+\frac{\sqrt{14}}{7}1+
7
14
.
7(x-(1+\frac{\sqrt{14}}{7}))(x-\frac{14-2\sqrt{14}}{14})
7(x−(1+
7
14
))(x−
14
14−2
14
)
7 Remove parentheses.
7(x-1-\frac{\sqrt{14}}{7})(x-\frac{14-2\sqrt{14}}{14})
7(x−1−
7
14
)(x−
14
14−2
14
)
8 Factor out the common term 22.
7(x-1-\frac{\sqrt{14}}{7})(x-\frac{2(7-\sqrt{14})}{14})
7(x−1−
7
14
)(x−
14
2(7−
14
)
)
9 Simplify \frac{2(7-\sqrt{14})}{14}
14
2(7−
14
)
to \frac{7-\sqrt{14}}{7}
7
7−
14
.
7(x-1-\frac{\sqrt{14}}{7})(x-\frac{7-\sqrt{14}}{7})
7(x−1−
7
14
)(x−
7
7−
14
)
10 Simplify \frac{7-\sqrt{14}}{7}
7 7− 14 to 1-\frac{\sqrt{14}}{7}1− 7 14
7(x-1-\frac{\sqrt{14}}{7})(x-(1-\frac{\sqrt{14}}{7}))
7(x−1− 7 /14 )(x−(1− 7 14 )) 11 Remove parentheses.
7(x-1-\frac{\sqrt{14}}{7})(x-1+\frac{\sqrt{14}}{7})
7(x−1− 7/ 14 .7(x−1+ 7 14 )