Which expression is equivalent to log Subscript 5 Baseline (StartFraction x Over 4 EndFraction) squared? 2 log Subscript 5 Baseline x log Subscript 5 Baseline 4 2 log Subscript 5 Baseline x log Subscript 5 Baseline 16 2 log Subscript 5 Baseline x 2 log Subscript 5 Baseline 4 2 log Subscript 5 Baseline x log Subscript 5 Baseline 4.

Respuesta :

The required equivalent expression for  [tex]{log}_{5} \ (\frac{x}{4} ) ^{2}[/tex] is [tex]2 \ log_{5}\ x-2\ log_{5}\ 4[/tex].

Given expression,

[tex]{log}_{5} \ (\frac{x}{4} ) ^{2}[/tex].

We have to find the Equivalent fraction of  [tex]{log}_{5} \ (\frac{x}{4} ) ^{2}[/tex].

We know that from the properties of logarithm, the following identities

[tex]log\ m^{n} =n\ log\ m[/tex] .....(1)

[tex]log\ \frac{m}{n} = log\ m- log\ n\\[/tex].......(2)

Now, [tex]{log}_{5} \ (\frac{x}{4} ) ^{2}= 2 \ log_{5} \ \frac{x}{4}[/tex] ( using 1 identity)

Again using 2 identity, we get

[tex]{log}_{5} \ (\frac{x}{4} ) ^{2}= 2[ log_{5}\ x-log_{5}\ 4 ][/tex]. (using 2 identity)

[tex]{log}_{5} \ (\frac{x}{4} ) ^{2}= 2 \ log_{5}\ x-2\ log_{5}\ 4[/tex]

Hence the required equivalent expression for  [tex]{log}_{5} \ (\frac{x}{4} ) ^{2}[/tex] is [tex]{log}_{5} \ (\frac{x}{4} ) ^{2}= 2 \ log_{5}\ x-2\ log_{5}\ 4[/tex].

For more details on logarithm follow the link:

https://brainly.com/question/163125

Answer:

C on edge

Step-by-step explanation: