Respuesta :
Use the distance formula to justify the congruence. The correct option is B. [tex]\Delta ABC\cong \Delta FED\\[/tex].
Given,
the coordinates of [tex]\Delta ABC[/tex] and [tex]\Delta FED[/tex] are [tex]A(0,0)\ B(4,0)\ C(1,3)\ D(5,2)\ E(8,5)\ F(8,1).[/tex]
The length of segment AC is [tex]\frac{3}{2}[/tex] and the length of segment DF is also [tex]\frac{3}{2}[/tex] .
[tex]\angle A = 72^{\circ}[/tex] and [tex]\angle F =72^{\circ}[/tex].
We have to find the correct statement regarding the triangles to be congruent.
Distance formula
We know that, The distance formula to calculate the distance between two points [tex]( x_{1} , y_{1})[/tex] , and [tex]( x_{2}, y_{2})[/tex] is given as,
[tex]D=\sqrt{(x_{2}-x_{1} ) ^{2}+(y_{2} -y_{1} )^2 }[/tex]
So, The distance between [tex]F(8,1)[/tex] and [tex]E(8,5)[/tex] Will be,
[tex]FE=\sqrt{(8-8)^2+(5-1)^2} \\FE=\sqrt{4^2} \\FE=4\\[/tex]
Similarly, the distance between [tex]A(0,0)[/tex] and [tex]B(4,0)[/tex] will be,
[tex]AB=\sqrt{(4-0)^2+(0-0)^2} \\AB=\sqrt{4^2} \\AB=4[/tex]
So, [tex]AB=FE[/tex].......(1)
Now, in [tex]\Delta ABC[/tex] and [tex]\Delta FED[/tex],
[tex]AB=FE[/tex] ( from equation 1 ).
[tex]\angle A=\angle F[/tex] ( Given )
[tex]AC=DF[/tex] ( Given )
So, By Side angle Side congruence rule,
[tex]\Delta ABC\cong \Delta FED[/tex].
Hence the correct option is B. [tex]\Delta ABC\cong \Delta FED\\[/tex].
For more details on SAS congruence rule follow the link:
https://brainly.com/question/11804042