Respuesta :

Question 16:

[tex]\alpha[/tex] and [tex]\beta[/tex] are the roots of the equation.

That means [tex](x-\alpha )(x-\beta ) = 2x^{2} -6x+5 = 0\\[/tex]

[tex](x-\alpha )(x-\beta ) = 2x^{2} -6x+5 = 0[/tex]

          [tex]2x^{2} -6x+5 = 0\\x^{2} -3x+\frac{5}{2} =0[/tex]

          [tex](x-\alpha )(x-\beta ) =x^{2} - (\alpha +\beta )x +\alpha \beta[/tex]

So,

[tex]x^{2} - (\alpha +\beta )x +\alpha \beta = x^{2} -3x+\frac{5}{2}[/tex]

Compare coefficient

[tex]\alpha +\beta = 3\\\alpha \beta = \frac{5}{2}[/tex]

Consider [tex]\frac{\beta }{\alpha } + \frac{\alpha }{\beta }[/tex]

[tex]\frac{\beta }{\alpha } + \frac{\alpha }{\beta } =\frac{ \alpha ^{2} +\beta ^{2}}{\alpha \beta }[/tex]

[tex]= \frac{(\alpha +\beta )^{2} -2\alpha \beta }{\alpha \beta } \\= \frac{3^{2} -2*\frac{5}{2} }{\frac{5}{2} } \\= 4*\frac{2}{5} \\=\frac{8}{5}[/tex]

Ans: 8/5

Question 19:

[tex]f(x+2) = 2x^{2} +5x-3\\[/tex]

Substitute x with -1

So,

[tex]f(1) = 2(-1)^{2} +5(-1)-3\\=2-5-3\\=-6[/tex]

Ans: -6