Given the arrangement of charged particles in the figure below, find the net electrostatic force on the q2 = 14.33-µC charged particle. (Assume q1 = 5.15 µC and q3 = −17.18 µC. Express your answer in vector form.)

F = ? N

Given the arrangement of charged particles in the figure below find the net electrostatic force on the q2 1433µC charged particle Assume q1 515 µC and q3 1718 µ class=

Respuesta :

The net force on the second charge is (665.15i - 4,415.87 j) N.

The given parameters:

  • Charge, q2 = 14.33 µC
  • Charge q3 = -17.18 µC
  • Charge q1 = 5.15 µC

Distance between the first, second and third charge

The distance between the first, second and third charge is calculated as follows;

[tex]r_{12} = \sqrt{(1--2)^2 + (1-0)^2} = \sqrt{3^2 + 1^2} = \sqrt{10} = 3.16 \ cm\\\\r_{23} = \sqrt{(1-0)^2 + (1--1)^2} = \sqrt{1^2 + 2^2} = \sqrt{5} = 2.24 \ cm[/tex]

The force on the second charge due to the first charge is calculated as follows;

[tex]F_{12} = \frac{kq_1 q_2}{r^2} \\\\F_{12} = \frac{9\times 10^9 \times 5.15 \times 10^{-6} \times 14.33 \times 10^{-6} }{(0.0316)^2} (i)\\\\F_{12} = 665.15i \ N\\\\[/tex]

The force on the second charge due to the third charge is calculated as follows;

[tex]F_{23} = \frac{kq_2q_3}{r_{23}^2} \\\\F_{23} = \frac{9\times 10^9 \times 14.33 \times 10^{-6} \times (-17.18 \times 10^{-6} )}{(0.0224)^2} (j)\\\\F_{23} = -4,415.87 j \ N[/tex]

The net force on the second charge is calculated as follows;

[tex]F_2_{net} = (665.15 i - 4,415.87j)N[/tex]

Learn more about Coulomb's force here: https://brainly.com/question/24743340