Respuesta :

Answer:

-4, 1, and 5

Step-by-step explanation:

To find the zeros of a polynomial, I like to get rid of the x's and keep the coefficients like this: x³ - 2x² - 19x + 20 -> 1  -2   -19   20

Now, we do some long division, let's try it out

For every number on the third row, multiply by it by the 1 and carry it over

1  |   1   -2   -19    20

      0

       1

Multiply the first coefficient by 1 and add it to the second coefficient

1  |   1   -2   -19    20

      0   1      

       1  -1      

Multiply the second coefficient by 1 and add it to the third coefficient

1  |   1   -2   -19    20

      0   1      -1    

       1  -1     -20

I think you get the idea

1  |   1   -2   -19    20

      0   1      -1    -20

      1   -1     -20    0

We end up with a remainder of 0, meaning 1 is one of the zeros

Usually, you would just plug and test, but I'll save you some time and spoil the fun for you; the remaining zeros are -4 and 5

-4 | 1    -1    -20

     0   -4    20

     1    -5     0

5 | 1    -5

    0    5

    0    0