Respuesta :

Answer: Check out the attached screenshot to see how the boxes are filled out.

==============================

Work Shown:

[tex]\displaystyle \int \sqrt[7]{x} dx = \int x^{1/7}dx\\\\\\ \displaystyle \int \sqrt[7]{x} dx = \frac{1}{1+1/7}x^{1+1/7}+C\\\\\\ \displaystyle \int \sqrt[7]{x} dx = \frac{1}{8/7}x^{8/7}+C\\\\\\ \displaystyle \int \sqrt[7]{x} dx = \frac{7}{8}x^{8/7}+C\\\\\\[/tex]

The rule I used in step 2 is

[tex]\displaystyle \int x^n dx = \frac{1}{n+1}x^{n +1}+C\\\\\\[/tex]

It's basically the same as saying

[tex]\displaystyle \int x^n dx = \frac{x^{n+1}}{n+1}+C\\\\\\[/tex]

where [tex]n \ne -1[/tex]. If n = -1, then [tex]\int x^{-1}dx = \int \frac{1}{x}dx = \ln(x)+C[/tex]

Ver imagen jimthompson5910