Respuesta :

Answer:

  • x = 2.5
  • y = 4

Step-by-step explanation:

We know that:

  • 4x + y = 14
  • 6x - 3y = 3

Let's first solve for y by choosing any equation.

  • 4x + y = 14
  • => y = 14 - 4x

Now, let's substitute the value of y into the second equation.

  • 6x - 3y = 3
  • => 6x - 3(14 - 4x) = 3
  • => 6x - 42 + 12x = 3
  • => 18x - 42 = 3
  • => 18x = 42 + 3
  • => 18x = 45
  • => x = 45/18 = 5/2 = 2.5

Now, let's substitute the value of x into the equation of y.

  • => 14 - 4x = y
  • => 14 - 4(2.5) = y
  • => 14 - 10 = y
  • => y = 4

Hence, the value of x and y are 2.5 and 4 respectively.

  • 4x+y=14---(1)
  • 6x-3y=3--(2)

From eq(1)

[tex]\\ \sf\longmapsto y=14-4x[/tex]--(3)

Put in eq(2)

[tex]\\ \sf\longmapsto 6x-3(14-4x)=3[/tex]

[tex]\\ \sf\longmapsto 6x-42+12x=3[/tex]

[tex]\\ \sf\longmapsto 18x=45[/tex]

[tex]\\ \sf\longmapsto x=\dfrac{45}{18}=\dfrac{15}{6}=5/3[/tex]

Put in eq(3)

[tex]\\ \sf\longmapsto y=14-4(\dfrac{15}{6})[/tex]

[tex]\\ \sf\longmapsto y=14-\dfrac{30}{3}[/tex]

[tex]\\ \sf\longmapsto y=14-10=4[/tex]