Respuesta :

Space

Answer:

[tex]\displaystyle d = 2[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Coordinate Planes

  • Coordinates (x, y)

Algebra II

Distance Formula: [tex]\displaystyle d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

Point R(3, 5)

Point S(5, 6)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d.

  1. Substitute in points [Distance Formula]:                                                     [tex]\displaystyle d = \sqrt{(5 - 3)^2 + (6 - 6)^2}[/tex]
  2. [Order of Operations] Simplify:                                                                   [tex]\displaystyle d = 2[/tex]

Answer:

2

Step-by-step explanation:

The formula for the lenght of a line is

[tex] \sqrt{(x2 \: - x1)^{2} + (y2 - y1) ^{2} } [/tex]

We can assume that the distance between them is equal to

[tex] \sqrt{ {(5 - 3)}^{2} + {(6 - 6)}^{2} } = \sqrt{2^{2} + 0} = \sqrt{4} = 2[/tex]

From the given coordinayes x1 =5, x2 =3. Y1 =6, y2 =6