Respuesta :
Answer:
[tex]\displaystyle d = 2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
Coordinate Planes
- Coordinates (x, y)
Algebra II
Distance Formula: [tex]\displaystyle d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
Point R(3, 5)
Point S(5, 6)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d.
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(5 - 3)^2 + (6 - 6)^2}[/tex]
- [Order of Operations] Simplify: [tex]\displaystyle d = 2[/tex]
Answer:
2
Step-by-step explanation:
The formula for the lenght of a line is
[tex] \sqrt{(x2 \: - x1)^{2} + (y2 - y1) ^{2} } [/tex]
We can assume that the distance between them is equal to
[tex] \sqrt{ {(5 - 3)}^{2} + {(6 - 6)}^{2} } = \sqrt{2^{2} + 0} = \sqrt{4} = 2[/tex]
From the given coordinayes x1 =5, x2 =3. Y1 =6, y2 =6